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Abstract

Flow situations involving localized phenomena and 3D, complex geometries are very
important and are often encountered in engineering applications in the aerospace,
chemical and petroleum industries. Such geometries defy attempts to lay a single grid
over the entire domain, for numerical solution of the problem using finite-difference
methods. In a Composite Grid method, the domain is decomposed into overlapping
regions which communicate at their boundaries. Each of these is individually trans-
formed to a discrete, orthogonal parallelepiped grid. The transformed flow equations
are then solved on these grids, in conjunction with the other grids which commu-
nicate with them, by using any of the wide variety of solvers including adaptive,
multigrid versions. In this paper, we will describe the grid generation procedure, the
data structure used to create the composite grid and some communication and other
design issues.



1 Introduction.
Numerical simulation of a flow problem using finite-difference methods is most con-
venient to implement if the flow domain is rectilinear. For domains which are not
rectilinear, a boundary-fitted curvilinear grid, consisting of nearly orthogonal gridline
families, is desired for accurate application of the boundary conditions. A rectilinear
grid in the computational space is then mapped to this curvilinear grid in the physical
space using a coordinate transfo-mation. However, it is often not possible to overlay
the entire domain with a single grid since we would like to avoid

" nonuniform density of gridlines.

* degeneracies in the transformation, when grid lines belonging to supposedly
near-orthogonal families are nearly parallel.

" singularities in the Jacobian of the transformation. In 2D, for example, these
are caused by the mapping of a rectangular region in the computational space
to a region with a different number of comers in the physical space, since a
continuous, non-singular mapping cannot introduce new singularities(corners),
nor smooth out existing ones.

These problems can be overcome by decomposing the domain in the physical
space into multiple, overlapping regions exchanging information at the boundaries.
Curvilinear parallelepiped' grids are then formed in the physical space by mapping
an orthogonal parallelepiped grid in the computational space onto each of these re-
gions. The result of this tessellation of the physical domain is called a Composite
Grid. The flow equations are also correspondingly mapped using the metrics of the
transformation. They are then solved to the desired accuracy on the grids in the com-
putational space, by using any of the dedicated, fast solvers which take advantage of
the grids' regular structure. Boundary information is swapped by overlapping grids
in the region of overlap, during the global iteration.

This Domain Decomposition is therefore necessitated due to the geometrical com-
plexity of the original domain as opposed to the other well-known reasons, such as
achieving computational speed-up by use of parallel processors or dividing the domain
into zones based on the physical nature of the flow. Of course, it doesn't preclude

'A curvilinear parallelepiped is defined as a polyhedral volume with six curvilinear quadrilateral
faces, not necessarily lying in parallel planes. The faces don't need to be planar either.



further subdivisions for computational reasons and the use of parallel processors to
obtain speed-up.

Composite Grids were used by Atta and Vadyak [ATT83] to solve the full-potential
equation using a composite-adaptive grid approach on a set of overlapping grids. Rai
et al. describe a composite grid method for unsteady Euler equations using touch-
ing grids in [HES86] and for compressible Navier-Stokes equations using overlapping
grids in [RAI87]. In incompressible flows, because of the nonconservative form of the
continuity equation, conservative exchange of information in the region of overlap
becomes difficult [MEA86]. Henshaw [HEN85] describes a Composite Grid method
for a time-dependent, two dimensional oceanographic problem. Wijngaart [WIJ891
describes a composite grid method for incompressible flows in two dimensions. This
work is an extension to three dimensions of Wijngaart's method.

We will first describe the various constructs that are created in our Composite Grid
system to convey the geometric and the boundary description of the flow problem into
the system and to enable the grid generation. We will then discuss some related issues
that arise due to our use of the multiple grids. Finally, we will briefly describe some
associated work in progress at Stanford aimed at tackling the visual editing, and
language, needs of a Composite Grid system.

2 Data Structures for the creation of the Com-
posite Grid.

Given a 3D, complex domain in the physical space and the flow problem described
therein, the grid generation procedure consists of the following steps:

" incorporating the geometric data, which constitutes the domain description,
into the Composite Grid system

" specifying the various boundary conditions which are applied to the equations
that describe the flow problem

" generating the set of discrete grids along with all the associated metrics as well
as the boundary information.
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2.1 Surfaces.

The regions into which the domain in the physical space is divided are called volumes.
These volumes are defined by their bounding surfaces, each of which is a curvilinear
quadrilateral. These surfaces in turn are defined either by their bounding curves or
by a more direct description. A curve is any segment of the boundary contour of
the domain, which is parameterized by a single parameter. Thus, a curve is strictly
a geometric feature. When a surface is defined by the specification of its bounding
curves, a transfinite interpolation of these bounding curves results in a definition of
the interior of the surface. Thus knowing the parametric definition of each of the
bounding curves (which establishes the relation between the curve's parameter and
the physical coordinates at every point along the curve) as well as the transfinite
interpolation from the boundaries into the interior of the surface, one can establish
the relation between the parametric coordinates and the physical coordinates at any
point on the surface. However, a surface with important interior features may also
be more directly defined, e.g., as a bicubic B-Spline surface. This definition also
establishes the same relation as above.

2.2 Curves.

From the above description, it is evident that the types of constructs allowed for the
definition of the curve determine to a large measure the range of applicability of the
Composite Grid system to practical domains. We chose to allow the B6zier family of
curves, such as B6zier curves, B-Spline curves and NURBS (lion Uniform Rational
B-_plines), as the primary means of representation of curves in our system. We will
now briefly describe the properties of these curves and the reasons for our choice
[FAR90].

e A B6zier curve is defined by the following2

de Casteljau algorithm:

Given: bo, bl,.. .,b nE E3 and t E R,
set

b(t) = (1 - t)br 1(t) + tbr-t M
i i i+1 i- =O,...,n- r

'En is the n-dimensional Euclidean (or point) space and R, is the m-dimensional linear (or

vector) space
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and b°(t) - bi. Then bn(t) is the point with parameter value t on the Bizier
curve bn.

The polygon P formed by bo,..., bn is called the Bdzier polygon or the control
polygon of the curve b, and the polygon vertices bi are called the Bdzier points.
By virtue of the convex barycentric combinations (all weights are non-negative
and sum to one) that the de Casteljau algorithm is solely composed of, a B6zier
curve possesses the following properties:

1. uonvex hull property - the curve lies within the convex hull of the control
points. Since the curve also has the variation diminishing property, it is
said to be shape preserving, i.e., wild wiggles not inherent in the data will
not arise during curvefitting.

2. affine invariance - the curve is invariant under an affine transformation
(involving just translation, rotation, stretching and shear) This implies
that the i3zier curve resulting from a set of mapped points is the same
as that resulting from a mapping of the original curve itself. This feature
allows us to avoid redundant specification of curves in the system by using
affine transformations of existing curves instead, if possible. This in turn
cuts down on the number of manhours required to geometrically specify
the domain, a very human-intensive process at this point in time.

3. symmetry - replacing t by (1 - t) has no effect on the curve.

4. pseudo-local control - when one of the control vertices is moved, though
the whole curve changes, it is mostly affected only locally.

modeling a curve of a complex shape by use of a single B~zier curve requires
a representation of high degree, which is undesirable from a computational
standpoint. In such cases, we use spline curves which are piecewise polynomial
curves. In particular, a spline curve composed of B~zier curve segments which
is specified by using a minimal information set and incorporates the continuity
conditions at the junction points is called a B-Spline. The information to be
specified is minimised by utilising the C' continuity conditions to evaluate the
junction points. The B-Spline possesses all of the advantages of the B~zier curve
and, in addition, has more localized control along with the ability to represent
more complex shapes.

3asserts that a convex polygon generates a convex curve
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* however, a B-Spline still cannot represent conics, which are a very popular
design tool in industry. To represent these and other rational curves, we use
NURBS which are built upon the fact that a conic section in E2 can be defined
as the projection of a parabola in E3 into a plane. Since a NURB is defined
in 3D as the projection through the origin of a 4D nonrational B-spline curve
into the hyperplane w = 1, it has the ability to represent conics. It also has all
the aforementioned properties of Bzier curves in addition to greater localized
control.

* The Bdzier constructs appear to be a natural choice since these are the represen-
tations that axe most often used in the CAD industry to design the domains on
which we solve our flow problems. However, in addition to the above constructs,
we also provide for the non-B~zier parametric polynomial representations of
curves, to be used where convenient.

2.3 Subsurfaces.

So far, we have only described the means by which geometric domain data is input
into the system. The connection to the flow problem is established via the concept of
subsurfaces. A surface is composed of a tessellation of one or more subsurfaces, each
of which has exactly one physical role to play in the flow problem. For example, one
part of a surface might be a physical boundary, while another part could be a periodic
boundary. Those surfaces, or parts thereof, which are artificially introduced during
the division of the domain into volumes, and are not part of the domain boundaries,
are given the role of a auxilia;'iy boundary.

Thus, a subsurface is defined in terms of its parent surface, the parametric intervals
it occupies within the parent surface and its physical role. Associated with each of
these roles is a means of describing and enforcing the problem boundary conditions
in terms of the variables of the flow problem. The specification of the surfaces and
subsurfaces completes the description of the flow problem in the physical space. We
now move on to generate the grids replete with the requisite information.

2.4 Faces.

The domain in the discrete space is described in terms of grids. The grids are defined
in terms of their bounding faces, each of which is a quadrilateral region, curvilinear

5



Subsu,4e

Surface

Figure 1: A simple, hypothetical 3D back-step flow domain for concept illustration.
Physical Problem - Geometry and Boundary Data

in the physical space and rectilinear in the computational space. A grid face is de-
fined as a tessellation of subsurfaces with one continuous parameterization in terms
of the parameters of the face. This parameterization is defined by a linear rescaling
of the parameterization of the component subsurfaces in terms of the corresponding
parent surfaces. The boundaries of the grid face are first parameterized using the
parameterization of the surfaces on which these boundaries lie. Transfinite interpo-
lation is then employed to first obtain a parameterization of the interior of each face
from its boundaries and then of the interior of the grid from its bounding faces. This
establishes the coordinate transformation from an orthogonal parallelepiped grid in
the computational coordinates (u, v, w) to the curvilinear parallelepiped grid in the
physical coordinates (z, y, z). The metrics of the the transformation are also easily
computed.

The subsurfaces that comprise a face need not necessarily be from the same surface;
they just need to be contiguous in the physical space. Also, a subsurface can be a
component of more than one face, as in the overlap region between two grids. Thus,
a subsurface, which imparts the flow boundary information to that geometric entity
called the surface, also provides the geometric description of the face. This duality
acts as the conduit of information from the physical problem to the numerical problem
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Subfaces

Face

Figure 2: Numerical Problem - Geometry and Boundary Data

in the computational space.

2.5 Subfaces.

So far, we have only provided a means to transfer the geometrical description from the
physical space to the computational space. We now introduce the concept of subfaces
to facilitate the transfer of the flow boundary information to the computational space.
The subfaces are contiguous parts of a face, each with exactly one role: physical
boundary, periodic boundary, interpolation boundary etc.

Thus, if contiguous subsurfaces comprising a face (but from different surfaces)
have the same boundary role, they would together form a single subface with that
role and the associated means of enforcing that boundary condition, be it applying
a physical boundary condition or getting the necessary information from a donor
grid. Analogous to a subsurface, a subface is defined in terms of its parent face, the
parametric interval it occupies in the parent face and the role it plays. For every grid,
we also specify the number of grid cells in each coordinate direction.

2.6 Summary of grid generation constructs.

To summarize:
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* curves and surfaces are purely geometric features employed to input into the
system the geometric description of the domain.

* subsurfaces serve to provide the flow boundary information of the physical prob-
lem and the geometrical information to the numerical problem.

e subfaces provide the flow boundary information to the numerical problem.

Figure 3: Composite Grid - only gridlines on faces shown

physical problem numerical problem
geometrical info surfaces subsurfaces
boundary info subsurfaces subfaces

Table 1: Functions of the constructs used in grid generation
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3 Other issues related to a Composite Grid.

We will now briefly discuss some related aspects that arise from the use of Composite
Grids such as specification of the boundary conditions, computing the solution on
Composite Grids with communication between grids, specification of the order of
traversal of grids, etc.

3.1 Boundary Conditions.

As mentioned before, the suibsurfaces serve as the vehicle for the description of the
boundary conditions. We use strongly functionally consistent boundary conditions
[WIJ891 to ensure convergence both in the classical(to the physical solution) and the
iterative(to the numerical solution) sense. This implies that we apply the physical
boundary conditions at all grid points that lie on the physical boundary of the domain.
Thus, for every point on a grid face that lies on a subsurface whose role is that of a
physical boundary, we use the relationship between the parameterizations of the face
and the surface (to which that subsurface belongs) and obtain the proper boundary
condition.

When the boundary condition is periodic, we will need to specify where in space
the linear boundary condition operator is to be evaluated. This involves the definition
of an affine transformation linking the target and donor points. We can then obtain
the boundary conditions at the target point by evaluating the boundary condition
operator at the donor point. If the target point is contained in more than one com-
ponent grid, then additional information is required to choose the appropriate donor
grid. Interpolation boundary conditions are enforced in a manner similar to peri-
odic boundary conditions, except that the communication is always between different
grids.

3.2 Communication between Grids.

To compute the solution on the Composite Grids, we use the traditional technique
of Schwartz Alternating Procedure [SCH69]. The Schwartz algorithm applied to two
overlapping domains ill and Q2 consists of

* assuming the boundary values on the edge of fll in the overlap region (thus
decoupling the problem),

* computing the solution in the interior of f1l,

9



" obtaining boundary values on the edge of Q2 in the overlap region from the
interior of ft ,

" computing the solution in the interior of f12,

" using this interior solution to determine the boundary values on the edge of II,

" repeating the cycle till convergence.

We note that no special routines are needed to solve the interface equations, since
boundary values are interpolated directly between grids. The convergence of this
algorithm has been analyzed by many researchers. Oliger et al. [OLI86] found that the
strong dependence of the convergence of the algorithm on the amount of overlap can
be reduced for elliptic problems using an overrelaxation technique for the boundary
values.

3.3 Global Iteration.

The order in which the various component grids are traversed in a global iteration
depends upon the direction of information exchange between the grids and thus on
the physics of the problem. If the specification of this ordering is manual, an explicit
listing of the order is provided. Otherwise, a traversal algorithm is supplied. The
ordering also has an effect on the suitability of the whole solution procedure for
parallel processing. [OLI86] Oliger et al. also introduce a Black-Red scheme that is
well-suited for multi-processor machines.

4 Associated Work under progress.
We will now briefly describe two of the tools, associated with an Adaptive Composite
Grid System, that are currently under development at Stanford.

4.1 VOUS.

VOUS [0L189] is an interactive, object-oriented, graphical editing system that is
being developed to provide a tool for the user to input, edit, visualize and manipulate
the domain data. The user will be able to input the curves and surfaces necessary
for the geometric description, perform any necessary curvefitting to geometric data
available, zoom in/out of regions of interest and perform various other manipulations.

10



[subf ace,,i,

f-, =sub faceul I
face1 1 = subsurface,,,

grid1 ,[ subsurfacell I

face 12 = ...............

face,, -= ....................
(number of grid cells(u, v, w))[subf aCe211 1

Composite grid= face2  I subf ace21[subsurface2 1

grid2  1.subsurface21 ,j.
face22 = ..................

face 2 . -- ....................

(number of grid cells(u,v, w))
gridi ....................................................................

surface,

surfaces surface2[................. .......1...
surface

Figure 4: Hierarchical description of a Composite Grid
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The hierarchical nature of the composite grids as described above, lends itself to an
easy and natural translation to LISP s-expressions [PIC90]. The domain can be
specified as a hierarchical list where the first atom in each list specifies the object to
be described in its sublist. Thus, we have a powerful means of representation of the
entire domain for future manipulations. These are the data structures used by VOUS
to transfer the domain description that were input by the user during a session to the
grid generation package M * E * S * H, which will then generate the various grids.

4.2 VORPAL.

VORPAL [SUH91], a programming language designed primarily for scientific applica-
tions which require interaction and high-level data structures, is being implemented
as a precompiler to C. It provides standard data types and operations including es-
sentially all FORTRAN data types as well as several other predefined types, some of
which are related to communication and program structure. VORPAL programmers
can also define their own data types. Storage management for most types is auto-
matic. Most data structures can be printed or read as a unit either in a textual form
which can be incorporated directly into a program source file, in the form of LISP
s-expressions, or in a binary form. Since VORPAL produces C code as an intermedi-
ate language, compatibly written C procedures as well as FORTRAN programs can
be used with little redesign.

5 Conclusions.

We have motivated the use of Composite Grids in situations where a single boundary-
fitted grid cannot overlay the entire flow domain. We then described the various
constructs devised to structure the geometric and boundary data that together de-
scribe the domain and the flow - the physical problem - and also the constructs used
to transfer this information to the computational space, where the transformed flow
equations are solved on regular grids - the numerical problem. Along the way, we
motivated the choice of the B~zier family of curves as our representation of choice in
the grid generation procedure. We then discussed some of the related issues raised
by the use of multiple grids and the communication between them. Finally, we de-
scribed some of the associated tools under development at Stanford to tackle the
visual editing and language needs of the Composite Grid system.
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